Professional resources

Research Labs and Faculty

Services > Adult Services A-Z > Eye care > Professional Resources > Research Labs and Faculty

Research labs and faculty

Research Labs

Burgoyne Lab
For the past 20 years his laboratory has been NIH funded to study the effects of aging and experimental glaucoma on the neural and connective tissues of the monkey optic nerve head within 3D histomorphometric reconstructions. This work now extends to studying the cell biology of connective tissue remodeling and axonal insult early in the disease. Building upon its 3D capabilities, his laboratory is also funded to use Optical Coherence Tomography (OCT) to phenotype the deep tissues of the monkey and human optic nerve head and peripapillary sclera.

Gardiner Lab
Dr. Gardiner’s research focuses on improving testing methods for glaucoma. This includes both functional testing (perimetry) and structural testing (imaging, OCT), and the way they fit together to give information about the patient’s vision, and how it may change over the next few years. He is funded by the National Institutes of Health to investigate ways to improve functional testing, making the tests more reliable and more useful. He works closely with Dr. Demirel on a longitudinal study to see how the disease progresses, and to try to predict how quickly it is likely to progress in order to better inform clinicians considering different treatment options. He also works with Dr. Burgoyne on ways to analyze the information obtained from OCT, an imaging device that is becoming widely used clinically. Thanks to his training in statistics, he helps other investigators with their studies, both in Legacy Devers Eye Institute and elsewhere in Legacy Health.

Wang Lab
By using an optic nerve ischemia model, Dr. Wang and his colleagues have demonstrated that inducing local ischemia around the optic nerve causes glaucomatous-like damage. It was further demonstrated that blood flow in the optic nerve surprisingly increases during the early stage before a progressive decline. The second surprising insight was that the autoregulation dysfunction within the optic nerve head manifests very differently to that seen in other tissues, and does not follow the general concept of autoregulation. These unique hemodynamic changes in autoregulation during diseased conditions lead to a new research direction.  In a project recently funded by the National Institutes of Health, Dr. Wang will be investigating the role of glial cells in blood flow autoregulation by using devices that are capable of simultaneously monitoring the vasculature and activities of glial cells while intravascular and extravascular pressures are instrumentally controlled. The research conducted by Dr. Wang is expected to benefit glaucoma patients by helping us to better understand mechanisms of blood flow autoregulation, and the relationship between ocular microcirculation and glaucomatous optic nerve damage.

Resources

Latest Eye Care Stories

Legacy News
Dr. Mark Terry receives international honor
 
Legacy News
Stem cell therapy emerges as potential glaucoma treatment
 
Healthy Living
Prevent glaucoma: Get an eye exam